Bitcoin in the Post-Quantum Era

A solution for a problem that doesn't exist yet... (as far as we know)
How often does that happen?

Dragos . Ilie

Imperial College
London

Plan for the next 45 mins

- Quantum World
€ Basics: Qubit, Superposition
€ Grover’s Algorithm — Unstructured Search
€ Shor’s Algorithm — Structured Search
=> Problem in Bitcoin
€ Revealed Public Keys
€ (Live) Transaction Hijacking
-> One Solution
€ Quantum Resistant Surrogate

€ Proof of Common Ownership

-> Questions

Quantum Mechanics — Qubit

Any quantum system with two states (also called basis states):
e Electron on ground energy level or excited energy level
e Photon polarized horizontally or vertically
e Electron spin up or down
When measuring the qubit, the result will be one of the basis states,

buuuuuut... when we are not measuring, the qubit can existin a
superposition of basis states.

Quantum Mechanics — Superposition

ground state

Laser pulse
for t=100ms

electron @<=—-\x—-——-=-—-

nucleus

excited state

Hydrogen atom

Quantum Mechanics — Superposition

ground state

Laser pulse
for t=40ms
electron @<= =\ - —-—~=—~

nucleus

excited state

Hydrogen atom

Quantum Mechanics — Superposition

ground state

Laser pulse
for t=40ms
electron @<= - ———==——

nucleus

excited state

Hydrogen atom

40% probability to
collapse to excited state

60% probability to
collapse to ground state

Quantum Mechanics — Everything is a wave?

Wave:

Constructive
Interference:

Destructive \/ \/
Interference: : T | ™ ,

Quantum Mechanics — Why collapse?

Forbidden orbit,

) destructive
Allowed orbit, interference
constructive
interference
2nr' #£ ni’,
2nr = nA n = integer
n = integer
iWave representing 4/ <5 Wave representing
electron electron

Quantum Mechanics — Why collapse?

Ground
Level:

Excited -

Level: \\/

"3

Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

1
Arrange state as a

superposition of all

possible inputs.
05

Complex Probability

-0.5

1 2 3 4 5 6 7. 8

All possible states

Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

.
Arrange state as a

superposition of all
possible inputs.

0.5
Invert wanted input.
x — -1 x where
f(x)=<[1 , if x+1=5

0, otherwise

Complex probability

-0.5

1 2 3 4 5 6 7 8

All possible states

Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

.
Arrange state as a

superposition of all
possible inputs.

0.5
Invert wanted input.
x — -1 x where

f(x)=<[1 , if x+1=5

0, otherwise

Complex probability

Reflect around average.

X — 2A-X =

1 2 3 4 5 6 7 8

All possible states

Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

.
Arrange state as a

superposition of all
possible inputs.

0.5
Invert wanted input.
x — -1f®) x, where
f(x)=-i:1, if x+1=5

0, otherwise

Complex probability

Reflect around average.
X — 2A-X

-0.5

And repeat previous two
steps. -1

All possible states

Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

.
Arrange state as a

superposition of all
possible inputs.

0.5
Invert wanted input. >
x — -1™x, where =
f(x)=<41, if x+1=5 ‘g 0
0, otherwise 5
3
Reflect around average. S -

X—2A-X

And repeat previous two

steps. For maximum -1
probability you need to

repeat exactly YN times. T —

1 2 3 - 5 6

Quantum Computing — Grover’s Algorithm

superposition invert around the mean: x — 2A - x

00...00) = a Z z) = —alm) + a Z) (244 a)m) + (24 —) Z)

T TFEM r#Em

invert amplitude of wanted value

e Searching unstructured data for some relatively rare value; e.g. finding a
nonce s.t. H(M || nonce) <t

e Time: O(WN) queries vs O(N)
e Space: O(log(N)) qubits

e Relevant Uses:
o Breaking hashes (not quite because N = 2256 so YN = 2'28)
o Mining (debatable because we actually need only V(N/t) steps or less if
we run the computation in parallel on multiple quantum computers)

Quantum Computing

Searching structured data.

Solves the Hidden subgroup
problem (period finding)

o Factoring (RSA)

o Discrete Logarithm (ECDSA)
Time: O(n®) vs O(2")
Space: O(n) qubits (approx. 6n)
With about 1500 qubits you can
break an ECDSA private key of
256 bits

— Shor’s Algorithm

Find period r of function f:

Superposition: |00...00)/00...00) = Z|-~ 100..00)

Z| }(00..00) :Z| M f(z

Measure f(x): $Z| Y fx :Z |]r+1

Measure f(x): :Z| S f(z) :>Za]r+l
J

Compute f:

Apply Quantum
Fourrier Transform:

Measure register:

Enough Quantum... Let’s talk about
Bitcoin

Digital Signatures in Bitcoin
Elliptic Curve Digital Signature Algorithm (ECDSA)

Some

X

Requires signature
against pk

«—

Alice’s
sk

| S—

Iﬁl
—® | <sig> <pk> New Alice’s address
= ‘ TX gk
;__, Shop’s address

sig can only be
created using sk

generate public key using one way function:
Elliptic Curve Point Exponentiation in a Finite Field

)

< Solve the Elliptic Curve Discrete Logarithm Problem

q

Alice’s
pk

Problem — ECDSA will be broken... at some point

£3 o) PN sy
from now
ECDSA 297
sk

Shor’s Algorithm

Problem — ECDSA will be broken... at some point
pk tmr /20 yrs

h GCD89 f)rgrr)n now
sk

Shor’s Algorithm
All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2%

® pk in output

Problem — ECDSA will be broken... at some point
pk tmr /20 yrs

h GCD89 f)rgrr)n now
sk

Shor’s Algorithm
All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2% 23.3%

B pk in output = pk in some input

Problem — ECDSA will be broken... at some point
Pk tmr /20 yrs

h GCD89 f)rgrr)n now
sk

Shor’s Algorithm
All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2% 23.3% 66.5%

® pk in output = pkin some input = pk not revealed

Solution — Easy.

.. replace ECDSA asap

Shor’s Algorithm

Transition to
Quantum

pk
ECDSA
now
sk
Candidates for QRsig:

Lattice-based cryptography
Multivariate cryptography
Hash-based cryptography
Code-based cryptography

Resistance \

tmr /20 yrs
from now

X1

secured by <sk>

<sk> o <pk>

Deploy quantum
resistant signatures
in Bitcoin

Deploy quantum

resistant signatures
in Bitcoin

I~

X1

secured by <sk>

<sig> <pk>

<sk> o <pk>

X

— 11

ADDRESS

OR

QR ADDRESS

| S—

Problem — Transaction Hijacking

I~

TX 1 secured by <sk>

<sig> <pk>

«—

<sk> o <pk>

Algorithm

X

— 11

ADDRESS

OR

QR ADDRESS

| S—

Problem — Transaction Hijacking

I — 11
o [<sig> <ok ADDRESS
TX [secured by <sk> / I X OR
' QR ADDRESS
<sk> = <pk>
Algorithm

ADDRESS’

OR

—0 | <sig> <pk> TX
] :PT<>_'*’_<SK> : ” QR ADDRESS'
| e e e] L

Problem — Live Transaction Hijacking

Block 1

Block 2

X0
X2
X3

X4

-+ |Block X

X1

Transaction Memory Pool

@ TX

Block
X+1

Problem — Live Transaction Hijacking

Block 1

Block 2

X0
X2
X3

X4

Block X

X1

Transaction Memory Pool

@ TX

e

@ TX

Block
X+1

Problem — Live Transaction Hijacking

Block 1

Block 2

X0
X2
X3

X4

Block X

X1

Transaction Memory Pool

@ TX

e

@ TX

Block
X+1

Problem — Live Transaction Hijacking

Block 1

Block 2

X0
X2
X3

X4

Block X

X1

Transaction Memory Pool

@ TX

e

@ TX

Block
X+1

Solution — Quantum Surrogate

<sig> <pk> Not secure

Shor’s Algorithm

Solution — Quantum Surrogate

<sig> <pk> Not secure

Shor’s Algorithm

Solution — Quantum Surrogate

<sig> <pk> Not secure

Shor’s Algorithm

e B S w—
_— e — mmm
o _—_—
_— e _——_
_— e o

<sig>(<pk> <pKaer>)<Sigo>

Quantum Surrogate

Solution — Quantum Surrogate

<sig> <pk> Not secure

Shor’s Algorithm

Shor’s !Ig‘ orithm .

<sigsngR>

, Secure
N\

Quantum Surrogate

Solution — Quantum Surrogate

insecure

Solution — Quantum Surrogate

[1
= TX
/ L | I—
insecure g e T s T T 1

L B e —
— e [
— e o I e
— e — s
—_— g

Solution — Quantum Surrogate

<sig> <pk>

=

insecure

<sig> <pk> <pke> <Sigo>

secure

[IX e

ADDRESS
OR

Solution — Quantum Surrogate

1] =1

<sig> <\pk> <pk‘QR7 <sig ar>

ADDRESS’

T

not same owner

OR

[TX| s

ATTACKER
succeeds

Solution — Quantum Surrogate

1] =1
ADDRESS'

<sig> <pk> <pk’ar> <sig'ar> ATTACKER

TX OR succeeds
QR ADDRESS®
| I |

Solution — Quantum Surrogate

<sig> <\pk> <pk‘QR7 <sig ar>

not same owner |

=|I

ADDRESS’

OR

[TX| s

<sig> <pk> <pk’'ar> <sig ar> proo1’c
L . \

ADDRESS’

OR

WR ADDRESS'
same owner =

ATTACKER
succeeds

ATTACKER
fails

Solution — Proof of Common Ownership

T 1
ADDRESS

—o <pk> <pkar> proof TX o)
‘ QR ADDRESS
L_—1

9B sk needed

15B | sk needed

N B sk needed

Solution — Proof of Common Ownership
with Fixed Delay

I commit ADDRESS
—o <pk> <pkar> proof
H(pk, pkor) H= — _ J I X OR
= / ”
7/ QR ADDRESS
At least 6 morEhg -, :

-
— - -

9B sk needed

15B | sk needed

N B sk needed

Solution — Proof of Common Ownership

I commit

H(pk, kaR) —_—

9B sk needed
15B | sk needed
NB | skneeded

with Fixed Delay

I

—o <pk> <pkar> proof
| |

- a [X
At least 6 morEhg Phd QR ADDRESS

—

<pk> <pk’o=> proof

=|I

ADDRESS

OR

g— |

ADDRESS’

OR

I TX e

Solution — Proof of Common Ownership

I commit

H(pk, kaR) —_—

9B sk needed
15B | sk needed
NB | skneeded

with Fixed Delay

I

—o <pk> <pkar> proof
| |

~_ago _ _ -~

N 1
)
<pk> <pk’or> proof

=|I

ADDRESS

OR

a [X
At least 6 morEhg Phd QR ADDRESS

g— |

ADDRESS’

OR

I TX e

Solution — Proof of Common Ownership

I commit

H(pk, kaR) ——

9B sk needed
15B | sk needed
N B sk needed

with Fixed Delay

[

~._ago _ _ -

- —_— Cannot rollback the
H(pk2 k‘oR)_l" =~ ~ _chain for six months !!!
-\ N 1

\
<pk> <pk o> proof

—o <pk> <pkar> proof TX
| |
pad ‘ QR ADDRESS
At least 6 morEhg -, :

[TX] s

=|I

ADDRESS

OR

g |

ADDRESS’

OR

Solution — Proof of Common Ownership
with Fixed Delay

((Commit Phase)\

Tcommit

H(pk, pkar) |§& T

/—(Delay Phase h

Tsec = 6 months

proof of existence

- - 1|—@ proof, sig

/(Reveal Phase)\

Treveal

INPUT:

pk, pkar, Sigar

References

1.

3.

|. Stewart, D. llie, A. Zamyatin, S. Werner, M. F. Torshizi and W. J. Knottenbelt:
Committing to quantum resistance: A slow defence for Bitcoin against a fast

quantum computing attack
tiny.cc/qrbtc

D. llie, W. J. Knottenbelt, and I. Stewart:

Committing to Quantum Resistance, Better: A Speed-and-Risk-Configurable
Defence for Bitcoin against a Fast Quantum Computer Attack
tiny.cc/betterqgrbtc

Post-Quantum Cryptography: pqcrypto.org or pgcrypto.eu.org

https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://pqcrypto.org/

Solution — Proof of Common Ownership
with First Valid Commitment

First valid

[r

ADDRESS
H(pk), Epk(H(pka)) <Pk> <pkas> proof
commit OR

- : >‘ QR ADDRESS
Long enough for |
no chain rewrites

Solution — Proof of Common Ownership
with First Valid Commitment

First valid

I commit

H(pk), Epk(H(pkar))

[

<pk> <pkar> proof

¢

Long enough for
no chain rewrites

=|I

ADDRESS

OR

»‘ QR ADDRESS
i

g |

—

<pk> <pk o> proof

ADDRESS’

OR

[TX] s

Solution — Proof of Common Ownership
with First Valid Commitment

First valid

I commit

H(pk), Epk(H(pkar))

[

<pk> <pkar> proof

¢

Long enough for
no chain rewrites

T | H(pk), Epk(H(pk’ar))
commit

—

<pk> <pk o> proof

»‘ QR ADDRESS
i

[TX] s

=|I

ADDRESS

OR

g |

ADDRESS’

OR

Solution — Proof of Common Ownership
with First Valid Commitment

First valid

I commit

H(pk), Epk(H(pkar))

[

<pk> <pkar> proof

¢

Long enough for
no chain rewrites

T | H(pk), Epk(H(pk’ar))
commit

—

Valid, but surely

<pk> <pk o> proof

not first!

»‘ QR ADDRESS
i

[TX] s

=|I

ADDRESS

OR

g |

ADDRESS’

OR

Solution — Proof of Common Ownership
with First Valid Commitment

First valid

I commit

H(pk), Epk(H(pkar))

[

<pk> <pkar> proof

¢

I commit

Long enough for
no chain rewrites

H(pk), E??(H(pk ar))

|

First, but surely
not valid!

»‘ QR ADDRESS
i

=|I

ADDRESS

OR

g |

—

<pk> <pk o> proof

[TX] s

ADDRESS’

OR

Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
honest tagA
users: validation_data1
L
]] ﬂ. [] |]]]]]
attackers: tagA tagA

validation_data2 validation_data3

Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)

H(pk1) [Epk1(H(pk1aR))]
honest tagA H(pk1)
users: validation_data Epk1(H(pk1aRr))

attackers:

Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) [blah blah, Epk1(H(pk1aR))]
honest tag H(pk1)
users: validation_data Epk1(H(pk1aRr))
S .7
]] L]]]]]]] [[
N
attackers: H(pk1)

blah blah

Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) [blah blah, Epk1(H(pk1aR))]
honest tag H(pk1) Reveal pk1
users: | validation_data Epki(H(pk 1)) evestp
S .7
] L L]] L []]] L [[
N
attackers: H(pk1)

blah blah

Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) [blah blah, Epk1(H(pk1aR)), Epk1(H(pk aRr))]
Eggf;t valida’:;?_data Epk1|(_||'(|?ri>(i21)QR)) Reveal pk1
I/I O IVI HE B H E E =)
N A1
attackers: b:;(rlplg:a)h Epk1IEIISIFZEI1<‘)QR))

Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
honest tag H(pk1) R .
users: validation_data Epk1(H(pk1aRr)) eveal p
T n 0o
o E = = E = E ®m
/\ /]
attackers: H(pk1) H(pk1)

blah blah Epk'l(H(pk‘QR))

Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
H(pk2) [Epk2(H(pk2aR))]
honest tag H(pk1) H(pk2)
users: validation_data Epk1(H(pk1aR)) Epk2(H(pk2aR))
“a " = h
] L L]] L]] L [[
/\ /'
attackers: H(pk1) H(pk1)

blah blah Epkt(H(pk ar))

Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) H(pk1aRr)
H(pk2) [Epk2(H(pk2aR))]

honest tag H(pk1) H(pk2) - o

users: validation_data Epk1(H(pk1aRr)) Epk2(H(pk2aR)) eveal p <

N P
attackers: H(pk1) H(pk1)

blah blah Epk1(H(pk‘QR))

Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
H(pk2) [Epk2(H(pk'aR)), Epk2(H(pk2aR))]
honest tag H(pk1) H(pk2) | pk2
users: | validation_data Epkt(H(pk1aR)) Epk2(H(pk2aRr)) Reveal p
Ty \4
] || []] |] [] |] []]
/\ /'
. H(pk1) H(pk1) H(pk2)
attackers: blah blah Epk1(H(pk'aRr)) Epk2(H(pk'aRr))

Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ...] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
H(pk2) H(pk ar)
Eggf:;t valida:ia(‘)?]_data Epk1|(_ll-(|?pi)(lj1) QR)) Epk2|(_||'(|F()Fi)(|32)QR Reveal pk2
I/I] IVI L]] \‘]]
N A1
attackers: bg(hplt()ra)h Epk1|:lfl?gl1<‘)QR)) Epk2lzl|f|r():§i‘)QR))

Fixed
Delay:

Only
First:

((Commit Phase

)’

Tcommit

H(pk, pkar)

4= =+

\

J

Commit Phase

/(

Tcommit

H(pk),
Epk(H(pkar))

First

/—(Delay Phase h

Tsec = 6 months

proof of existence

/—(Delay Phase h

User waits some time: Tsec

s.t. chain rewrites are not feasible

/(Reveal Phase)\

Treveal

INPUT:

.|—@ proof, sig

pk, pkar, sigar

\

=/

/(Reveal Phase

)\

j\ /

Treveal

INPUT:

sig, pk
pkar, Sigar

Hashes

Fixed size small “ID” (fingerprint)

Arbitrarily long data g%@ Hash Function >

o)

SHA256, RIPEMD160, etc.

Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et .
dolore magna aliqua. Ut enim ad minim veniam, Hash Function ag3k4mrk

quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequa.

e Deterministic

e Pre-image resistance: Given y, cannot find x, s.t. H(x) =y

e 2nd pre-image resistance: Given x, cannot find z 1= x, s.t. H(z) = H(x)
o

Collision resistance: Cannot find x,z with z 1= x, s.t. H(z) = H(x)

Hashes — Proof of Work

e Find a nonce such that H(block header || nonce) < threshold
e 22°0possible H outputs — that's a 78 digit number
e threshold =6,379,265,451,411 — only 13 digit number

e The best chance is to just randomly try loads of values for nonce

Hashes — Merkle Trees

[e |

PadinN

Lo

]

/

H(T)

i)

AN

H(T)

TX8

/

H(T)

TX7

H(T)

TX6

TX5

H(T)

TX4

H(T)

TX3

X2

TX1

A lot of
data:

Hashes — Proof of existence

ag3k4mrk

[iuxs90xzbn[p]

T~

{ d5kr47bvall]

N

[udy3747rijf]

7

\

gt7dyt

N\

J

TX1

Hashes — Proof of existence

Shop has some hash output: [ag3k4mrk]
Buyer proves to [iuxs90xzbn[p] (dg2@60t8k J)

shopper that TX1
is recorded in the

blockchain: [d5kr47bvall]

v

udy3747rjf

gt7dyt yitl78

X1

Hashes — Proof of existence

.
(=)
fewbits:< / \

L2 enm
AN
) Ly

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

2

/

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

)

&
H-Gh(er

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

Light-clients can hold only:

