Bitcoin in the Post-Quantum Era

A solution for a problem that doesn't exist yet... (as far as we know) How often does that happen?

Dragos I. Ilie

Centre for Cryptocurrency Research and Engineering Imperial College London

Imperial College London

Plan for the next 45 mins

- → Quantum World
 - Basics: Qubit, Superposition
 - Grover's Algorithm Unstructured Search
 - Shor's Algorithm Structured Search
- → Problem in Bitcoin
 - Revealed Public Keys
 - (Live) Transaction Hijacking
- → One Solution
 - Quantum Resistant Surrogate
 - Proof of Common Ownership
- → Questions

Quantum Mechanics – Qubit

Any quantum system with two states (also called basis states):

- Electron on ground energy level or excited energy level
- Photon polarized horizontally or vertically
- Electron spin up or down

When measuring the qubit, the result will be one of the basis states, buuuuuut... when we are not measuring, the qubit can exist in a superposition of basis states.

Quantum Mechanics – Superposition

Hydrogen atom

Quantum Mechanics – Superposition

ground state

Hydrogen atom

Quantum Mechanics – Superposition

Quantum Mechanics – Everything is a wave?

Quantum Mechanics – Why collapse?

Quantum Mechanics – Why collapse?

Searching unstructured data. Eg: Find x such that x+1 = 5.

Arrange state as a superposition of all possible inputs.

Searching unstructured data. Eg: Find x such that x+1 = 5.

All possible states

Searching unstructured data. Eg: Find x such that x+1 = 5.

All possible states

Searching unstructured data. Eg: Find x such that x+1 = 5.

Searching unstructured data. Eg: Find x such that x+1 = 5.

Arrange state as a superposition of all possible inputs. 0.5 -Invert wanted input. Complex probability $x \rightarrow -1^{f(x)} x$, where f(x) = -1, if x+1=50, otherwise Reflect around average. -0.5 $x \rightarrow 2A - x$ And repeat previous two steps. For maximum 1 2 3 4 5 7 6 8 probability you need to repeat exactly \sqrt{N} times. All possible states

 $\begin{array}{ll} \text{superposition} & \text{invert around the mean: } \mathbf{x} \to \mathbf{2A} - \mathbf{x} \\ |00...00\rangle \Rightarrow & \alpha \sum_{x} |x\rangle \ \Rightarrow \ -\alpha |m\rangle + \alpha \sum_{x \neq m} |x\rangle \ \Rightarrow (2A + \alpha) |m\rangle + (2A - \alpha) \sum_{x \neq m} |x\rangle \\ \text{invert amplitude of wanted value} \end{array}$

- Searching unstructured data for some relatively rare value; e.g. finding a nonce s.t. H(M || nonce) < t
- Time: $O(\sqrt{N})$ queries vs O(N)
- Space: O(log(N)) qubits
- Relevant Uses:
 - Breaking hashes (not quite because N = 2^{256} so \sqrt{N} = 2^{128})
 - Mining (debatable because we actually need only $\sqrt{(N/t)}$ steps or less if we run the computation in parallel on multiple quantum computers)

Searching structured data.

- Solves the Hidden subgroup problem (period finding)
 - Factoring (RSA)
 - Discrete Logarithm (ECDSA)
- Time: O(n³) vs O(2ⁿ)
- Space: O(n) qubits (approx. 6n)
- With about 1500 qubits you can break an ECDSA private key of 256 bits

Find period r of function f: Superposition: $|00...00\rangle|00...00\rangle \Rightarrow \sum |x\rangle|00...00\rangle$ Compute f: $\sum |x\rangle |00..00\rangle \Rightarrow \sum |x\rangle |f(x)\rangle$ Measure f(x): $\Rightarrow \sum |x\rangle |f(x)\rangle \Rightarrow \sum \alpha |jr+l\rangle m\rangle$ Measure f(x): $\Rightarrow \sum |x\rangle |f(x)\rangle \Rightarrow \sum \alpha |jr + l'\rangle (m')$ $\Rightarrow (\sum \alpha |jr\rangle)$ Apply Quantum Fourrier Transform: Measure register: OR $j_2 r$

Enough Quantum... Let's talk about Bitcoin

Digital Signatures in Bitcoin

Elliptic Curve Digital Signature Algorithm (ECDSA)

All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2%

All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2% 23.3%

pk in output = pk in some input

All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2%	23.3%	66.5%

pk in output = pk in some input = pk not revealed

Solution – Easy... replace ECDSA asap

Deploy quantum resistant signatures in Bitcoin

Not secure

Quantum Surrogate

insecure

ATTACKER succeeds

not same owner

Solution – Proof of Common Ownership

References

- I. Stewart, D. Ilie, A. Zamyatin, S. Werner, M. F. Torshizi and W. J. Knottenbelt: Committing to quantum resistance: A slow defence for Bitcoin against a fast quantum computing attack tiny.cc/qrbtc
- 2. D. Ilie, W. J. Knottenbelt, and I. Stewart:

Committing to Quantum Resistance, Better: A Speed-and-Risk-Configurable Defence for Bitcoin against a Fast Quantum Computer Attack tiny.cc/betterqrbtc

3. Post-Quantum Cryptography: pqcrypto.org or pqcrypto.eu.org

Miner's point of view

attackers:

tagA	[validation_data1, validation_data2,] time ordered list of gibberish (for now)
H(pk1)	H(pk1qr)
H(pk2)	[Epk2(H(pk2QR))]
honest users:	tag validation_data H(pk1) Epk1(H(pk1QR)) H(pk2) Epk2(H(pk2QR)) Reveal pk2
attackers:	H(pk1) blah blah Epk1(H(pk`QR))

Hashes

- Deterministic
- Pre-image resistance:
- 2nd pre-image resistance:
- Collision resistance:

Given y, cannot find x, s.t. H(x) = yGiven x, cannot find z != x, s.t. H(z) = H(x)Cannot find x,z with z != x, s.t. H(z) = H(x)

Hashes – Proof of Work

- Find a nonce such that H(block_header || nonce) < threshold
- 2²⁵⁶ possible H outputs that's a 78 digit number
- threshold = 6,379,265,451,411 only 13 digit number
- The best chance is to just randomly try loads of values for nonce

Hashes – Merkle Trees

Hashes – Proof of existence

Hashes – Proof of existence

Hashes – Proof of existence

Hashes – Immutability

Each block contains a merkle tree of transactions and the hash of the previous block:

Hashes – Immutability

Each block contains a merkle tree of transactions and the hash of the previous block:

