
Bitcoin in the Post-Quantum Era

Dragos I. Ilie

Centre for Cryptocurrency Research and Engineering
Imperial College London

A solution for a problem that doesn't exist yet… (as far as we know)
How often does that happen?

Plan for the next 45 mins
➔ Quantum World

◆ Basics: Qubit, Superposition

◆ Grover’s Algorithm – Unstructured Search

◆ Shor’s Algorithm – Structured Search

➔ Problem in Bitcoin
◆ Revealed Public Keys

◆ (Live) Transaction Hijacking

➔ One Solution
◆ Quantum Resistant Surrogate

◆ Proof of Common Ownership

➔ Questions

Quantum Mechanics – Qubit

Any quantum system with two states (also called basis states):

● Electron on ground energy level or excited energy level

● Photon polarized horizontally or vertically

● Electron spin up or down

When measuring the qubit, the result will be one of the basis states,
buuuuuut… when we are not measuring, the qubit can exist in a
superposition of basis states.

Quantum Mechanics – Superposition

Laser pulse
for t=100ms

Hydrogen atom

nucleus

ground state

electron

excited state

Quantum Mechanics – Superposition

Laser pulse
for t=40ms

Hydrogen atom

nucleus

ground state

electron

excited state

Quantum Mechanics – Superposition

40% probability to
collapse to excited state

60% probability to
collapse to ground state

Laser pulse
for t=40ms

Hydrogen atom

nucleus

ground state

electron

excited state

Quantum Mechanics – Everything is a wave?

Wave:

Constructive
Interference:

Destructive
Interference:

Quantum Mechanics – Why collapse?

Quantum Mechanics – Why collapse?

Ground
Level:

Excited
Level:

Quantum Computing – Grover’s Algorithm

Arrange state as a
superposition of all
possible inputs.

Searching unstructured data. Eg: Find x such that x+1 = 5.

Quantum Computing – Grover’s Algorithm

Arrange state as a
superposition of all
possible inputs.

Invert wanted input.
x → -1f(x) x, where
f(x)= 1, if x+1=5

 0, otherwise

Searching unstructured data. Eg: Find x such that x+1 = 5.

Quantum Computing – Grover’s Algorithm

Arrange state as a
superposition of all
possible inputs.

Invert wanted input.
x → -1f(x) x, where
f(x)= 1, if x+1=5

 0, otherwise

Reflect around average.
x → 2A - x

Searching unstructured data. Eg: Find x such that x+1 = 5.

Quantum Computing – Grover’s Algorithm

Arrange state as a
superposition of all
possible inputs.

Invert wanted input.
x → -1f(x) x, where
f(x)= 1, if x+1=5

 0, otherwise

Reflect around average.
x → 2A - x

And repeat previous two
steps.

Searching unstructured data. Eg: Find x such that x+1 = 5.

Quantum Computing – Grover’s Algorithm

Arrange state as a
superposition of all
possible inputs.

Invert wanted input.
x → -1f(x) x, where
f(x)= 1, if x+1=5

 0, otherwise

Reflect around average.
x → 2A - x

And repeat previous two
steps. For maximum
probability you need to
repeat exactly √N times.

Searching unstructured data. Eg: Find x such that x+1 = 5.

Quantum Computing – Grover’s Algorithm

● Searching unstructured data for some relatively rare value; e.g. finding a
nonce s.t. H(M || nonce) < t

● Time: O(√N) queries vs O(N)

● Space: O(log(N)) qubits

● Relevant Uses:
○ Breaking hashes (not quite because N = 2256 so √N = 2128)
○ Mining (debatable because we actually need only √(N/t) steps or less if

we run the computation in parallel on multiple quantum computers)

superposition

invert amplitude of wanted value

invert around the mean: x → 2A - x

Quantum Computing – Shor’s Algorithm

● Solves the Hidden subgroup
problem (period finding)
○ Factoring (RSA)
○ Discrete Logarithm (ECDSA)

● Time: O(n3) vs O(2n)
● Space: O(n) qubits (approx. 6n)
● With about 1500 qubits you can

break an ECDSA private key of
256 bits

Superposition:

Compute f:

Measure f(x):

Measure f(x):

Apply Quantum
Fourrier Transform:

Measure register: OR

Find period r of function f:
Searching structured data.

Enough Quantum… Let’s talk about
Bitcoin

Digital Signatures in Bitcoin
Elliptic Curve Digital Signature Algorithm (ECDSA)

Alice’s
pk

Alice’s
sk

generate public key using one way function:
Elliptic Curve Point Exponentiation in a Finite Field

Some
TX

New
TX

<sig> <pk> Alice’s address

Shop’s address
ORRequires signature

against pk

sig can only be
created using sk

Solve the Elliptic Curve Discrete Logarithm Problem

Problem – ECDSA will be broken… at some point

Shor’s Algorithm

pk

sk

pk

sk
now ECDSA ECDSA

tmr / 50 yrs
from now
???

Problem – ECDSA will be broken… at some point

Shor’s Algorithm

pk

sk

pk

sk
now ECDSA ECDSA

All revealed public keys are under attack, even for slow Quantum Computers!

tmr / 20 yrs
from now
???

Problem – ECDSA will be broken… at some point

Shor’s Algorithm

pk

sk

pk

sk
now ECDSA ECDSA

All revealed public keys are under attack, even for slow Quantum Computers!

tmr / 20 yrs
from now
???

Problem – ECDSA will be broken… at some point

Shor’s Algorithm

pk

sk

pk

sk
now ECDSA ECDSA

All revealed public keys are under attack, even for slow Quantum Computers!

tmr / 20 yrs
from now
???

Solution – Easy… replace ECDSA asap

Shor’s Algorithm

pk

sk

pk

sk
now ECDSA ECDSA

Transition to
Quantum

Resistance

pkQR

skQR

QRsig

Candidates for QRsig:
● Lattice-based cryptography
● Multivariate cryptography
● Hash-based cryptography
● Code-based cryptography

tmr / 20 yrs
from now
???

TX 1 secured by <sk>

<sk> ⇨ <pk>

Deploy quantum
resistant signatures

in Bitcoin

TX 1 secured by <sk> TX<sig> <pk> ADDRESS

QR ADDRESS
ORsecured by <sk>

<sk> ⇨ <pk>

Deploy quantum
resistant signatures

in Bitcoin

<pk> ⇨ <sk>

Shor’s Algorithm

Problem – Transaction Hijacking

TX 1 secured by <sk> TX<sig> <pk> ADDRESS

QR ADDRESS
ORsecured by <sk>

<sk> ⇨ <pk>

<pk> ⇨ <sk>

Shor’s Algorithm

Problem – Transaction Hijacking

TX 1 secured by <sk> TX<sig> <pk> ADDRESS

QR ADDRESS
ORsecured by <sk>

<sk> ⇨ <pk>

TX
ADDRESS`

QR ADDRESS`

OR
<sig> <pk>

secured by <sk>

Problem – Live Transaction Hijacking

Block 1 Block 2 Block X Block
X+1

TX 1 TX

Transaction Memory Pool

TX 0
TX 2
TX 3
TX 4

Problem – Live Transaction Hijacking

TX

Block 1 Block 2 Block X Block
X+1

TX 1 TX

Transaction Memory Pool

TX 0
TX 2
TX 3
TX 4

TX

Block 1 Block 2 Block X Block
X+1

TX 1 TX

Transaction Memory Pool

TX 0
TX 2
TX 3
TX 4

Problem – Live Transaction Hijacking

TX

Block 1 Block 2 Block X Block
X+1

TX 1 TX

Transaction Memory Pool

TX 0
TX 2
TX 3
TX 4

Problem – Live Transaction Hijacking

Solution – Quantum Surrogate

Shor’s Algorithm

Not secure<sig> <pk>

Shor’s Algorithm

Not secure<sig> <pk>

redefine VALID SIGNATURES to

Solution – Quantum Surrogate

Shor’s Algorithm

Not secure<sig> <pk>

<sig> <pk> <pkQR> <sigQR>

Quantum Surrogate

redefine VALID SIGNATURES to

Solution – Quantum Surrogate

Shor’s Algorithm

Not secure<sig> <pk>

<sig> <pk> <pkQR> <sigQR>

Shor’s Algorithm

Quantum Surrogate

redefine VALID SIGNATURES to

QRsig Secure

Solution – Quantum Surrogate

TX<sig> <pk>

insecure

Solution – Quantum Surrogate

TX<sig> <pk>

redefine VALID SIGNATURES to
insecure

Solution – Quantum Surrogate

TX<sig> <pk>

redefine VALID SIGNATURES to
insecure

TX<sig> <pk> <pkQR> <sigQR> ADDRESS

QR ADDRESS
OR

secure

Solution – Quantum Surrogate

TX<sig> <pk> <pk`QR> <sig`QR> ADDRESS`

QR ADDRESS`
OR

not same owner

ATTACKER
succeeds

Solution – Quantum Surrogate

redefine VALID SIGNATURES to
not same owner

ATTACKER
succeeds

Solution – Quantum Surrogate

TX<sig> <pk> <pk`QR> <sig`QR> ADDRESS`

QR ADDRESS`
OR

redefine VALID SIGNATURES to
not same owner

ATTACKER
succeeds

TX<sig> <pk> <pk`QR> <sig`QR> proof ADDRESS`

QR ADDRESS`
OR

ATTACKER
fails

proof of
same owner

Solution – Quantum Surrogate

TX<sig> <pk> <pk`QR> <sig`QR> ADDRESS`

QR ADDRESS`
OR

Solution – Proof of Common Ownership

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR

sk needed9 ฿

sk needed15 ฿

sk neededN ฿

Solution – Proof of Common Ownership
 with Fixed Delay

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR

sk needed9 ฿

sk needed15 ฿

sk neededN ฿

 Tcommit

H(pk, pkQR)

At least 6 months
ago

Solution – Proof of Common Ownership
 with Fixed Delay

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR

sk needed9 ฿

sk needed15 ฿

sk neededN ฿

 Tcommit

H(pk, pkQR)

At least 6 months
ago

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

Solution – Proof of Common Ownership
 with Fixed Delay

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR

sk needed9 ฿

sk needed15 ฿

sk neededN ฿

 Tcommit

H(pk, pkQR)

At least 6 months
ago

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

 H(pk, pk`QR)

Solution – Proof of Common Ownership
 with Fixed Delay

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR

sk needed9 ฿

sk needed15 ฿

sk neededN ฿

 Tcommit

H(pk, pkQR)

At least 6 months
ago

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

 H(pk, pk`QR)
Cannot rollback the
chain for six months !!!

Commit Phase

Tcommit

H(pk, pkQR)

Delay Phase

Treveal

INPUT:
 proof, sig

pk, pkQR, sigQR

Reveal Phase

proof of existence

Tsec = 6 months

Solution – Proof of Common Ownership
 with Fixed Delay

References
1. I. Stewart, D. Ilie, A. Zamyatin, S. Werner, M. F. Torshizi and W. J. Knottenbelt:

Committing to quantum resistance: A slow defence for Bitcoin against a fast
quantum computing attack
tiny.cc/qrbtc

2. D. Ilie, W. J. Knottenbelt, and I. Stewart:
Committing to Quantum Resistance, Better: A Speed-and-Risk-Configurable
Defence for Bitcoin against a Fast Quantum Computer Attack
tiny.cc/betterqrbtc

3. Post-Quantum Cryptography: pqcrypto.org or pqcrypto.eu.org

https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180410#
https://pqcrypto.org/

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR Tcommit

H(pk), Epk(H(pkQR))

Solution – Proof of Common Ownership
 with First Valid Commitment

Long enough for
no chain rewrites

First valid

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR Tcommit

H(pk), Epk(H(pkQR))

Solution – Proof of Common Ownership
 with First Valid Commitment

First valid

Long enough for
no chain rewrites

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR Tcommit

H(pk), Epk(H(pkQR))

Solution – Proof of Common Ownership
 with First Valid Commitment

 Tcommit
 H(pk), Epk(H(pk`QR))

First valid

Long enough for
no chain rewrites

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR Tcommit

H(pk), Epk(H(pkQR))

Solution – Proof of Common Ownership
 with First Valid Commitment

 Tcommit
 H(pk), Epk(H(pk`QR))

First valid

Long enough for
no chain rewrites

Valid, but surely
not first!

TX<pk> <pk`QR> proof ADDRESS`

QR ADDRESS`
OR

TX<pk> <pkQR> proof ADDRESS

QR ADDRESS
OR Tcommit

H(pk), Epk(H(pkQR))

Solution – Proof of Common Ownership
 with First Valid Commitment

First valid

Long enough for
no chain rewrites

First, but surely
not valid!

 Tcommit
H(pk), E??(H(pk`QR))

tagA
validation_data1

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

attackers:

honest
users:

tagA
validation_data2

tagA
validation_data3

Solution – First Valid Commitment Index
Miner's point of view

tagA
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

[Epk1(H(pk1QR))]H(pk1)

H(pk1)
Epk1(H(pk1QR))

attackers:

honest
users:

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

[blah blah, Epk1(H(pk1QR))]H(pk1)

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blahattackers:

honest
users:

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

[blah blah, Epk1(H(pk1QR))]H(pk1)

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blahattackers:

honest
users:

Reveal pk1

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

[blah blah, Epk1(H(pk1QR)), Epk1(H(pk`QR))]H(pk1)

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blahattackers:

honest
users:

Reveal pk1

H(pk1)
Epk1(H(pk`QR))

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

H(pk1QR) H(pk1)

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blahattackers:

honest
users:

Reveal pk1

H(pk1)
Epk1(H(pk`QR))

Solution – First Valid Commitment Index
Miner's point of view

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

H(pk1QR)H(pk1)

[Epk2(H(pk2QR))]H(pk2)

attackers:

honest
users:

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blah

H(pk1)
Epk1(H(pk`QR))

H(pk2)
Epk2(H(pk2QR))

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

H(pk1QR)H(pk1)

[Epk2(H(pk2QR))]H(pk2)

attackers:

honest
users:

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blah

H(pk1)
Epk1(H(pk`QR))

H(pk2)
Epk2(H(pk2QR)) Reveal pk2

tag
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

H(pk1QR)H(pk1)

[Epk2(H(pk`QR)), Epk2(H(pk2QR))]H(pk2)

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blah

H(pk1)
Epk1(H(pk`QR))

H(pk2)
Epk2(H(pk2QR))

attackers:

honest
users:

Reveal pk2

H(pk2)
Epk2(H(pk`QR))

Solution – First Valid Commitment Index
Miner's point of view

tag
validation_data

[validation_data1, validation_data2, …] time ordered list of gibberish (for now)tagA

H(pk1QR)H(pk1)

H(pk`QR)H(pk2)

H(pk1)
Epk1(H(pk1QR))

H(pk1)
blah blah

H(pk1)
Epk1(H(pk`QR))

H(pk2)
Epk2(H(pk2QR))

attackers:

honest
users:

Reveal pk2

H(pk2)
Epk2(H(pk`QR))

Solution – First Valid Commitment Index
Miner's point of view

Commit Phase

Tcommit

H(pk, pkQR)

Delay Phase

Treveal

INPUT:
 proof, sig

pk, pkQR, sigQR

Reveal Phase

proof of existence

Tsec = 6 months

Commit Phase

Tcommit

H(pk),
Epk(H(pkQR))

Delay Phase

Treveal

INPUT:
 sig, pk

 pkQR, sigQR

Reveal Phase

User waits some time: Tsec

s.t. chain rewrites are not feasible

Fixed
Delay:

Only
First:

First
valid

Hashes

● Deterministic
● Pre-image resistance: Given y, cannot find x, s.t. H(x) = y
● 2nd pre-image resistance: Given x, cannot find z != x, s.t. H(z) = H(x)
● Collision resistance: Cannot find x,z with z != x, s.t. H(z) = H(x)

Arbitrarily long data Hash Function Fixed size small “ID” (fingerprint)

SHA256, RIPEMD160, etc.
Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequa.

Hash Function ag3k4mrk

Hashes – Proof of Work
● Find a nonce such that H(block_header || nonce) < threshold

● 2256 possible H outputs – that’s a 78 digit number

● threshold = 6,379,265,451,411 – only 13 digit number

● The best chance is to just randomly try loads of values for nonce

Hashes – Merkle Trees

TX1 TX2 TX3 TX4 TX5 TX6 TX7 TX8

H() H() H() H() H() H() H() H()

H(||) H(||) H(||) H(||)

H(||) H(||)

H(||)

Only a
few bits:

A lot of
data:

Hashes – Proof of existence

TX1

gt7dyt yitl78

d5kr47bva\l udy3747rjf

iuxs90xzbn[p dq2@6Ot8k

ag3k4mrk

Hashes – Proof of existence

TX1

ag3k4mrkShop has some hash output:

Buyer proves to
shopper that TX1
is recorded in the
blockchain:

gt7dyt yitl78

d5kr47bva\l udy3747rjf

iuxs90xzbn[p dq2@6Ot8k

TX6

H(■)

H(■ || ■)

H(■ || ■)

H(||)

Only a
few bits:

Hashes – Proof of existence

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

Hashes – Immutability

ha
sh

ha
sh

ha
sh

ha
sh

Light-clients can hold only:

Each block contains a merkle tree of transactions and the
hash of the previous block:

