Bitcoin in the Post-Quantum Era

A solution for a problem that doesn't exist yet... (as far as we know)
How often does that happen?
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€ Proof of Common Ownership
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Quantum Mechanics — Qubit

Any quantum system with two states (also called basis states):
e Electron on ground energy level or excited energy level
e Photon polarized horizontally or vertically
e Electron spin up or down
When measuring the qubit, the result will be one of the basis states,

buuuuuut... when we are not measuring, the qubit can existin a
superposition of basis states.



Quantum Mechanics — Superposition
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Quantum Mechanics — Superposition

ground state
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Quantum Mechanics — Superposition

ground state

Laser pulse
for t=40ms
electron @<= - ———==——

nucleus

excited state

Hydrogen atom

40% probability to
collapse to excited state

60% probability to
collapse to ground state



Quantum Mechanics — Everything is a wave?

Wave:

Constructive
Interference:

Destructive \/ \/
Interference: : T | ™ ,




Quantum Mechanics — Why collapse?

Forbidden orbit,

) destructive
Allowed orbit, interference
constructive
interference
2nr' #£ ni’,
2nr = nA n = integer
n = integer
iWave representing 4/ <5 Wave representing
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Quantum Mechanics — Why collapse?
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Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.
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Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

.
Arrange state as a

superposition of all
possible inputs.

0.5
Invert wanted input.
x — -1f®) x, where
f(x)=-i:1, if x+1=5

0, otherwise

Complex probability

Reflect around average.
X — 2A-X

-0.5

And repeat previous two
steps. -1

All possible states



Quantum Computing — Grover’s Algorithm

Searching unstructured data. Eg: Find x such that x+1 = 5.

.
Arrange state as a

superposition of all
possible inputs.

0.5
Invert wanted input. >
x — -1™x, where =
f(x)=<41, if x+1=5 ‘g 0
0, otherwise 5
3
Reflect around average. S -

X—2A-X

And repeat previous two

steps. For maximum -1
probability you need to

repeat exactly YN times. T —

1 2 3 - 5 6



Quantum Computing — Grover’s Algorithm

superposition invert around the mean: x — 2A - x

00...00) = a Z z) = —alm) + a Z ) (244 a)m) + (24 — ) Z )

T TFEM r#Em

invert amplitude of wanted value

e Searching unstructured data for some relatively rare value; e.g. finding a
nonce s.t. H(M || nonce) <t

e Time: O(WN) queries vs O(N)
e Space: O(log(N)) qubits

e Relevant Uses:
o Breaking hashes (not quite because N = 2256 so YN = 2'28)
o Mining (debatable because we actually need only V(N/t) steps or less if
we run the computation in parallel on multiple quantum computers)



Quantum Computing

Searching structured data.

Solves the Hidden subgroup
problem (period finding)

o Factoring (RSA)

o Discrete Logarithm (ECDSA)
Time: O(n®) vs O(2")
Space: O(n) qubits (approx. 6n)
With about 1500 qubits you can
break an ECDSA private key of
256 bits

— Shor’s Algorithm

Find period r of function f:

Superposition: |00...00)/00...00) = Z|-~ 100..00)

Z| }(00..00) :Z| M f(z

Measure f(x): $Z| Y fx :Z |]r+1

Measure f(x): :Z| S f(z) :>Za]r+l
J

Compute f:

Apply Quantum
Fourrier Transform:

Measure register:




Enough Quantum... Let’s talk about
Bitcoin



Digital Signatures in Bitcoin
Elliptic Curve Digital Signature Algorithm (ECDSA)

Some

X

Requires signature
against pk
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sk

| S—

Iﬁl
—® | <sig> <pk> New Alice’s address
= ‘ TX gk
;__, Shop’s address

sig can only be
created using sk

generate public key using one way function:
Elliptic Curve Point Exponentiation in a Finite Field

)

< Solve the Elliptic Curve Discrete Logarithm Problem

q

Alice’s
pk




Problem — ECDSA will be broken... at some point

£3 o) PN sy
from now
ECDSA 297
sk

Shor’s Algorithm
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Shor’s Algorithm
All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2%

® pk in output
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Problem — ECDSA will be broken... at some point
Pk tmr /20 yrs

h GCD89 f)rgrr)n now
sk

Shor’s Algorithm
All revealed public keys are under attack, even for slow Quantum Computers!

Bitcoins aggregated by public key visibility

10.2% 23.3% 66.5%

® pk in output = pkin some input = pk not revealed




Solution — Easy.

.. replace ECDSA asap

Shor’s Algorithm

Transition to
Quantum

pk
ECDSA
now
sk
Candidates for QRsig:

Lattice-based cryptography
Multivariate cryptography
Hash-based cryptography
Code-based cryptography

Resistance \

tmr /20 yrs
from now
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Deploy quantum
resistant signatures
in Bitcoin



Deploy quantum

resistant signatures
in Bitcoin
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Problem — Transaction Hijacking

I~

TX 1 secured by <sk>
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Problem — Transaction Hijacking

I — 11
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Problem — Live Transaction Hijacking

Block 1

Block 2
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Solution — Quantum Surrogate

<sig> <pk> Not secure
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Solution — Quantum Surrogate

<sig> <pk> Not secure

Shor’s Algorithm
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o _—_—
_— e _——_
_— e o

<sig>(<pk> <pKaer>)<Sigo>

Quantum Surrogate



Solution — Quantum Surrogate

<sig> <pk> Not secure

Shor’s Algorithm

Shor’s !Ig‘ orithm .

<sigsngR>

, Secure
N\

Quantum Surrogate



Solution — Quantum Surrogate

insecure



Solution — Quantum Surrogate
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Solution — Quantum Surrogate

<sig> <pk>

=

insecure

<sig> <pk> <pke> <Sigo>

secure

[ IX e

ADDRESS
OR




Solution — Quantum Surrogate
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Solution — Quantum Surrogate
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Solution — Quantum Surrogate

<sig> <\pk> <pk‘QR7 <sig ar>

not same owner |
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ADDRESS’
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Solution — Proof of Common Ownership

T 1
ADDRESS

—o <pk> <pkar> proof TX o)
‘ QR ADDRESS
L_—1

9B sk needed

15B | sk needed

N B sk needed




Solution — Proof of Common Ownership
with Fixed Delay
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—o <pk> <pkar> proof
H(pk, pkor) H= — _ J I X OR
= / ”
7/ QR ADDRESS
At least 6 morEhg -, :

-
— - -

9B sk needed

15B | sk needed

N B sk needed




Solution — Proof of Common Ownership
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Solution — Proof of Common Ownership
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Solution — Proof of Common Ownership

I commit

H(pk, kaR) ——

9B sk needed
15B | sk needed
N B sk needed

with Fixed Delay
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Solution — Proof of Common Ownership
with Fixed Delay

((Commit Phase)\

Tcommit

H(pk, pkar) |§& T

/—( Delay Phase h

Tsec = 6 months

proof of existence

- - 1|—@ proof, sig

/( Reveal Phase )\

Treveal

INPUT:

pk, pkar, Sigar
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Solution — Proof of Common Ownership
with First Valid Commitment
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Solution — Proof of Common Ownership
with First Valid Commitment
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Solution — Proof of Common Ownership
with First Valid Commitment
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Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
honest tagA
users: validation_data1
L
] ] ﬂ. [ ] | ] ] ] ] ]
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validation_data2 validation_data3




Solution — First Valid Commitment Index
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Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
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Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
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Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
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Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
H(pk2) [Epk2(H(pk2aR))]
honest tag H(pk1) H(pk2)
users: validation_data Epk1(H(pk1aR)) Epk2(H(pk2aR))
“a " = h
] L L] ] L ] ] L [ [
/\ /'
attackers: H(pk1) H(pk1)

blah blah Epkt(H(pk ar))




Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
H(pk1) H(pk1aRr)
H(pk2) [Epk2(H(pk2aR))]

honest tag H(pk1) H(pk2) - o
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Solution — First Valid Commitment Index

Miner's point of view
tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
H(pk2) [Epk2(H(pk'aR)), Epk2(H(pk2aR))]
honest tag H(pk1) H(pk2) | pk2
users: | validation_data Epkt(H(pk1aR)) Epk2(H(pk2aRr)) Reveal p
Ty \4
] || [] ] | ] [] | ] [] ]
/\ /'
. H(pk1) H(pk1) H(pk2)
attackers: blah blah Epk1(H(pk'aRr)) Epk2(H(pk'aRr))




Solution — First Valid Commitment Index

Miner's point of view

tagA | [validation_data1, validation_data2, ... ] time ordered list of gibberish (for now)
H(pk1) H(pk1aR)
H(pk2) H(pk ar)
Eggf:;t valida:ia(‘)?]_data Epk1|(_ll-(|?pi)(lj1) QR)) Epk2|(_||'(|F()Fi)(|32)QR Reveal pk2
I/I ] IVI L] ] \‘ ] ]
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Fixed
Delay:
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Tcommit
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Tcommit
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First

/—( Delay Phase h
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User waits some time: Tsec

s.t. chain rewrites are not feasible
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INPUT:
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Hashes

Fixed size small “ID” (fingerprint)

Arbitrarily long data g%@ Hash Function >

o)

SHA256, RIPEMD160, etc.

Lorem ipsum dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et .
dolore magna aliqua. Ut enim ad minim veniam, Hash Function ag3k4mrk

quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequa.

e Deterministic

e Pre-image resistance: Given y, cannot find x, s.t. H(x) =y

e 2nd pre-image resistance: Given x, cannot find z 1= x, s.t. H(z) = H(x)
o

Collision resistance: Cannot find x,z with z 1= x, s.t. H(z) = H(x)



Hashes — Proof of Work

e Find a nonce such that H(block header || nonce) < threshold
e 22°0possible H outputs — that's a 78 digit number
e threshold =6,379,265,451,411 — only 13 digit number

e The best chance is to just randomly try loads of values for nonce




Hashes — Merkle Trees

[ e |
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TX4

H(T)

TX3
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TX1

A lot of
data:




Hashes — Proof of existence

ag3k4mrk

[ iuxs90xzbn[p ]

T~

{ d5kr47bvall ]

N

[ udy3747rijf ]

7

\

gt7dyt

N\

J

TX1




Hashes — Proof of existence

Shop has some hash output: [ ag3k4mrk ]
Buyer proves to [ iuxs90xzbn[p ] ( dg2@60t8k J)

shopper that TX1
is recorded in the

blockchain: [ d5kr47bvall ]

v

udy3747rjf

gt7dyt yitl78

X1




Hashes — Proof of existence
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Hashes — Immutabillity

Each block contains a merkle tree of transactions and the
hash of the previous block:

2

/
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