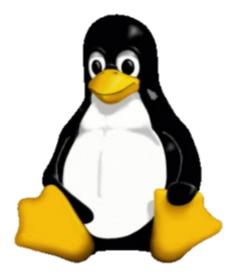

Open Source Hardware and Open Source Chip Design

Chaos Communication Congress (36c3) – CDC stage

Drew FustiniOSH Park

drew@oshpark.com @oshpark / @pdp7

- Open Source Hardware designer at OSH Park
 - PCB manufacturing service in the USA
 - drew@oshpark.com / Twitter: @oshpark
- Volunteer Member of Board of Directors of BeagleBoard.org Foundation
 - drew@beagleboard.org
- Volunteer Member of the Board of Directors of the Open Source Hardware Association (OSHWA)
 - serving as Vice President
 - drew@pdp7.com



What is Open Source?

Examples of popular Open Source projects

What is Open Source?

- The term "open source" refers to something people can modify and share because its design is publicly accessible
- Open Source software is software with source code that anyone can: inspect, modify, and enhance

A program is free software if the users have **four essential freedoms**:

- 1) run the program as you wish, for any purpose
- 2) study how the program works, and change it so it does your computing as you wish
- 3) redistribute copies so you can help your neighbor
- 4) distribute copies of your modified versions

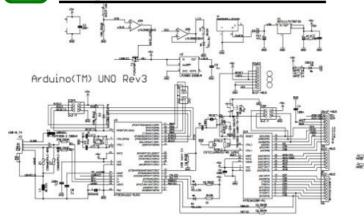
- FLOSS is a term to describe software that is Free, Libre, or Open Source Software
- In the context of hardware projects, I consider these terms equivalent:
 - Free Hardware
 - Libre Hardware
 - Open Hardware
 - Open Source Hardware

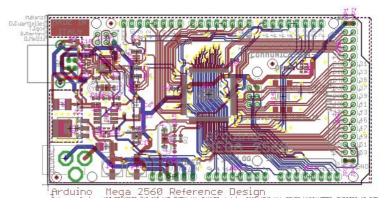
Slides: https://github.com/pdp7/talks/blob/master/oshw-linux-36c3.pdf

Open Source Hardware

Statement of Principles:

Hardware whose design is made publicly available so that anyone can **study**, modify, distribute, make, and sell the design or hardware based on that design Slides: https://github.com/pdp7/talks/blob/master/oshw-linux-36c3.pdf


Open Source Hardware



Documentation <u>required</u> for electronics:

Editable source files for CAD software such as KiCad or EAGLE

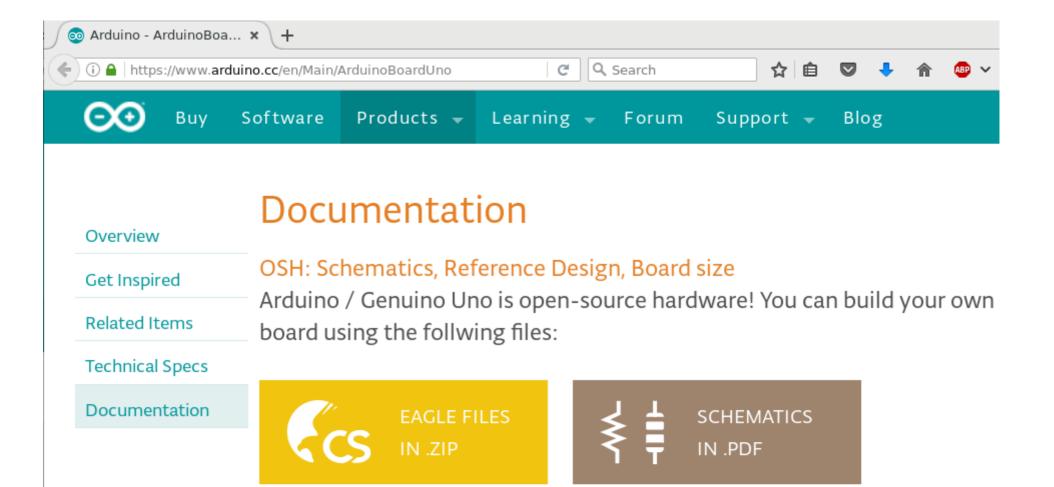
Best practice: all components available from distributors in low quantity

Open Source Hardware

Example: Arduino achieved critical mass by sharing their hardware designs and source code

Arduino Uno

Arduino: The Documentary describes the team's motivation



Open Source Hardware

Example: Arduino Uno schematic and PCB layout design files for EAGLE CAD can be downloaded from Arduino.cc

Publish documentation with an Open Source license:

- Creative Commons Share-Alike: CC-BY-SA
 - Non-Commercial (NC) clause is NOT acceptable
- Copyleft: GPLv2, GPLv3
- Permissive: Apache, BSD, MIT
- OSHW inspired: CERN OHL, TAPR, SolderPad

CERN Open Hardware Licence

- Originally written for CERN designs hosted in the Open Hardware Repository
- Can be used by any designer wishing to share design information using a license compliant with the OSHW definition criteria.
- CERN OHL version 1.2
 Contains the license itself and a guide to its usage

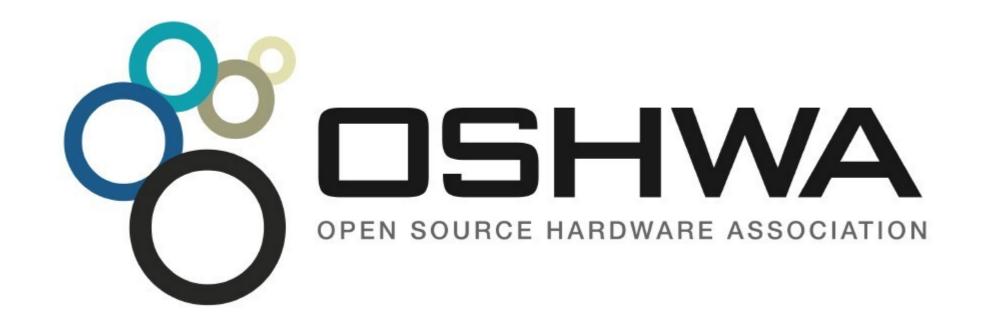
CERN Open Hardware Licence

- Video interview with <u>Javier Serrano</u>
- physicist and electronics engineer at CERN
- co-author of the CERN Open Hardware License
- creator of the Open Hardware Repository

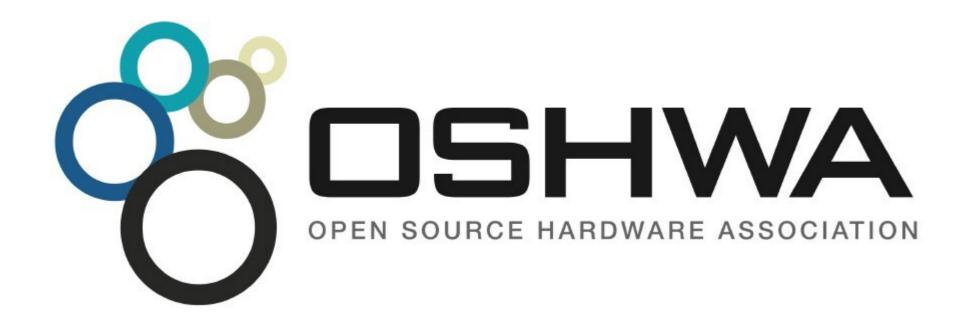
Licenses, Copyright and Patents can get confusing!

Review of Popular OSHW Licenses

Video of Ari Douglas at OHS 2014



What is the spirit of Open Source?


Publish everything that will:

enable collaborative development

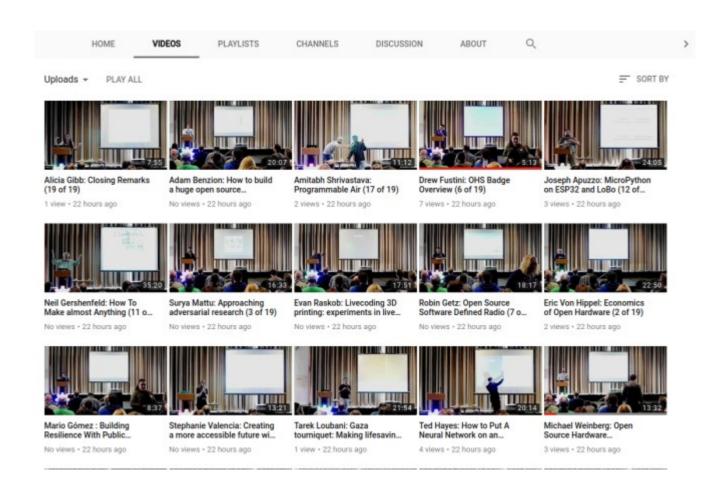
 Goal is <u>NOT</u> to check a box on a marketing brochure or add keywords to a crowdfunding campaign

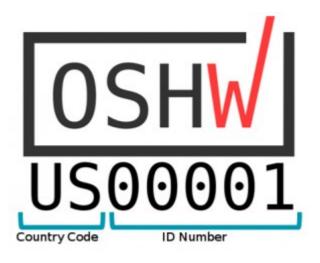
- US-based 501(c)3 non-profit organization
- Hosts the Open Source Hardware definition
- "aims to be the voice of the open hardware community, ensuring that technological knowledge is accessible to everyone, and encouraging the collaborative development of technology"

- OSHW Best Practices
- Quick Reference Guide
- OSHW "May and Must" (PDF)
- OSHW Checklist (PDF)

Open Hardware Summit (OHS)

- OHS 2020: March 13 in NYC (USA)
 - http://2020.oshwa.org/
- •8 prior summits:
 - 2010, 2011: New York Hall of Science
 - **2012**: Eyebeam (NYC)
 - **2013**: MIT (Boston area)
 - **2014:** Roma, Italia!
 - 2015: Philadelphia, USA
 - 2016: Portland, Oregon, USA
 - 2017: Denver, USA
 - **2018**: MIT (Cambridge, MA, USA)


October is Open Hardware Month!

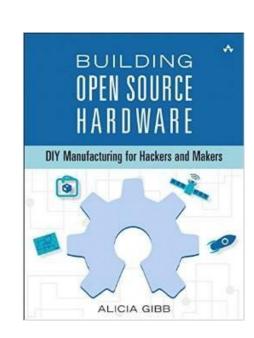

- People all over the world celebrated with meet-ups, talks and workshops
- Kicked off with events at RAIT in Vienna (Austria) and SparkFun in Colorado (USA), followed by gatherings in Poland, Panama, Thailand, Japan, Ghana and more!
- 40 events in 14 different countries across 5 continents

<u>Open Hardware Summit (OHS)</u>

 The Open Hardware Summit 2018 talks are available as individual videos on YouTube

Open Source Hardware Certification Program

- Allows hardware that complies with the community definition of Open Source Hardware to display a <u>certified OSHW logo</u>
- Make it easier for users of OSHW to track down documentation and information
- More information: <u>certificate.oshwa.org</u>



Open Source Hardware

Resources

- Join OSHWA
- Subscribe to the mailing list
- Post in the OSHWA Forum
- Follow on Twitter:
 - @OHSummit
 - @oshwassociation
- Building Open Source Hardware by Alicia Gibb (executive director of OSHWA)

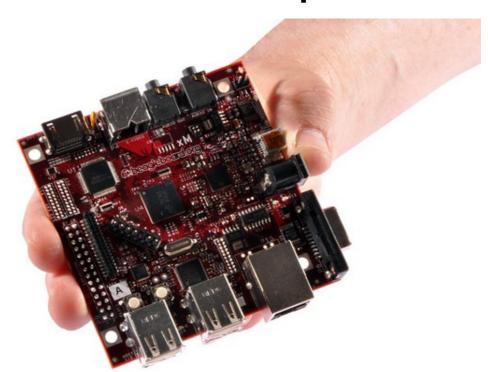
Slides: https://github.com/pdp7/talks/blob/master/oshw-linux-36c3.pdf

Open Source Hardware

Section: LINUX on OSHW (my two favorite things!)

Novena laptop

- Created by Bunnie Huang & Sean Cross (xobs)
 - Chumby, "Hacking the Xbox", <u>amazing reverse engineers</u>
- 100% Open Source Hardware laptop
- Quad-core 1.2GHz ARM, 4GB RAM, SSD, WiFi
- Xilinx FPGA for custom hardware design
- Software Defined Radio (SDR) module


Deagleboard.org

- Open Source Hardware computing for Makers, Educators & Professionals
- Developed by BeagleBoard.org Foundation and BeagleBoard.org Community
- Manufacturers: element14, GHI, Seeed

Deagleboard.org

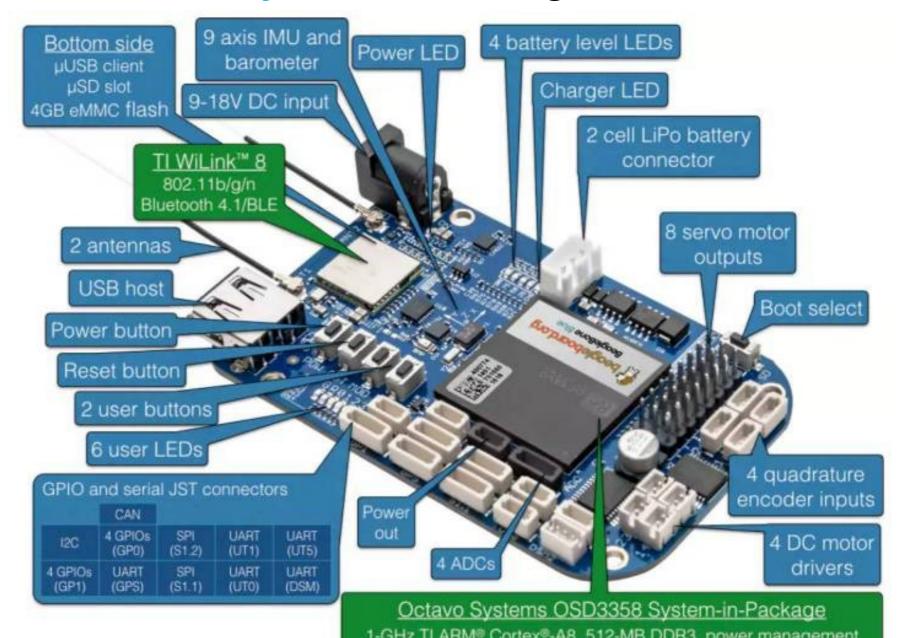
BeagleBoard.org released the first BeagleBoard, an affordable, open hardware ARM computer in 2008

beagleboard.org

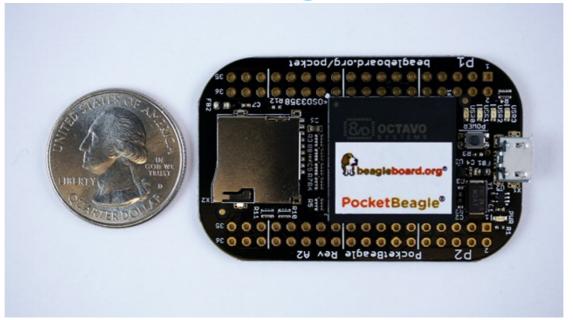
Maker focused, Altoids tin sized **BeagleBone** introduced in **2011**

Deagleboard.org

More affordable, more powerful **BeagleBone Black** in **2013**



beagleboard.org


Open Source Hardware BeagleBone derivatives

	Capes	HDMI	Flash	Special
BeagleBoard.org BeagleBone	Υ	N	N	JTAG
BeagleBoard.org BeagleBone Black	Υ	Υ	Υ	-
Arrow BeagleBone Black Industrial	Υ	Υ	Υ	Industrial
Element14 BeagleBone Black Industrial	Υ	Υ	Y	Industrial
SeeedStudio BeagleBone Green	Υ	N	Υ	Grove
SanCloud BeagleBone Enhanced	Y	Υ	Υ	1GB, 1Gbit, wireless
BeagleBoard.org BeagleBone Blue	N	N	Y	Robotics
BeagleBoard.org BeagleBoard-X15	N	Υ	N	Big jump in CPUs and I/O

BeagleBone Blue: complete Linux robotics controller. 4 layer PCB designed in EAGLE.

BeagleBoard.org PocketBeagle

- Michael Welling designed the "PocketBone" using the Octavo SiP and shared on Hackaday.io
- In response to online demand, <u>BeagleBoard.org</u> worked with <u>GHI</u> in Michigan to design and manufacture a new product: the <u>PocketBeagle</u>

BeagleBoard.org PocketBeagle

- PocketBeagle design makes it feasible for individuals to create their own derivatives
- 4 layer PCB published for <u>EAGLE</u> and <u>KiCad</u>
- Low cost assembly is possible with solder paste stencil and toaster oven

BeagleLogic

- Kumar Abhishek created a derivative board intended to be used a logic analyzer
- <u>Finalist</u> in the Best Product round of the <u>Hackaday Prize</u>

BeagleBone Al: The Fast Track for Embedded Machine Learning


BeagleBone Al

"TI C66x digital-signal-processor (DSP) cores and embeddedvision-engine (EVE) cores supported through an optimized TIDL machine learning OpenCL API with pre-installed tools. Focused on everyday automation in industrial, commercial and home applications."

Feature highlights:

- 1GB RAM and 16GB on-board eMMC flash with high-speed interface
- USB type-C for power and superspeed dual-role controller; and USB type-A host
- Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth
- microHDMI
- Zero-download out-of-box software experience

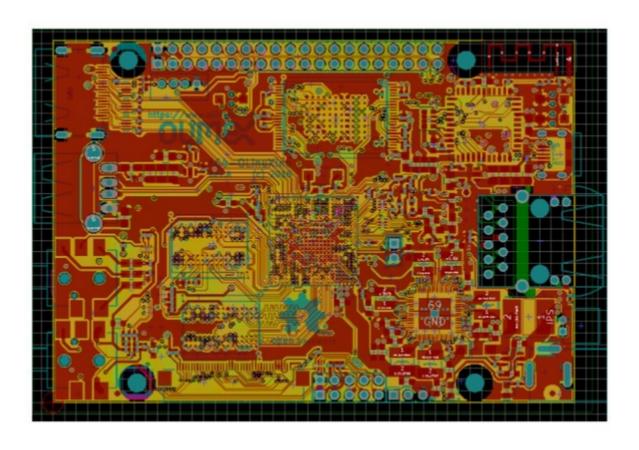
BeagleBone AI design files

OLinuXino

- Low cost OSHW Linux computers
- Designed and manufactured by Olimex in Bulgaria
- Great blog post:

Open Source Hardware, why it matters a nd what is pseudo OSHW

A64-OlinuXino


- Allwinner A64: Quad Core 64-bit ARM
- Designed with Open Source KiCad
- 1GB RAM, 4GB eMMC, WiFi+BLE4.0

Using FOSS tools for OSHW project

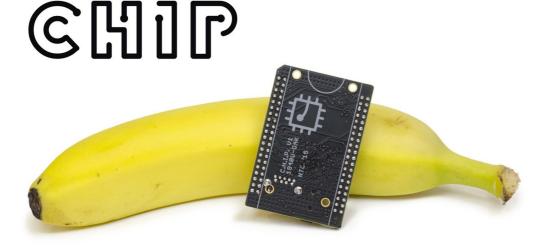
Designing with KiCAD of 64-bit ARM board

Tsvetan Usunov, OLIMEX Ltd

FOSDEM 2016

Slides / Video

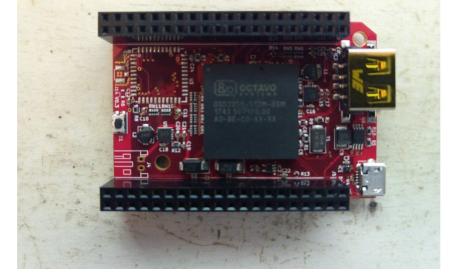
- KiCad is an Open Source EDA suite including Schematic Capture and PCB Layout
- Cross platform: Windows, Mac OS and Linux
- CERN has contributed professional CAD features for high-speed digital design
- Learn to design your own PCB in KiCad with:
 Getting to Blinky

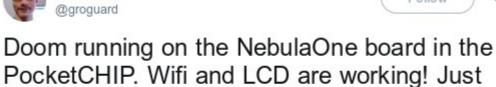

TERES I Laptop

- "DIY Open Source Hardware Software Hacker's friendly Modular Laptop"
- Developing an Open Source Laptop talk by Olimex founder Tsvetan Usunov at Hackaday Belgrade
- Design files on GitHub:

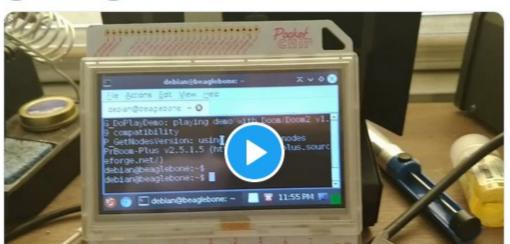
"everyone can download & learn, study, edit, modify"

The World's First \$9 Computer


- getchip.com
- Next Thing Co. in Oakland
- Kickstarter in 2015
- Company ended in 2018

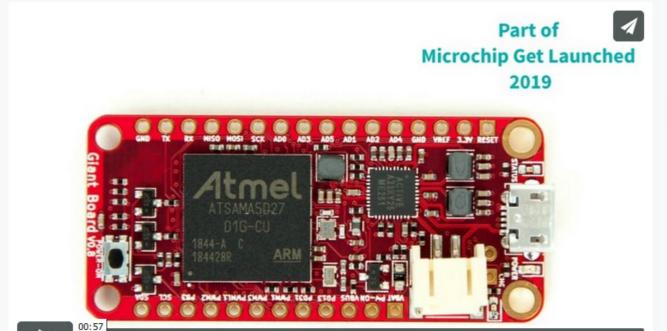

C.H.I.P. is OSHW

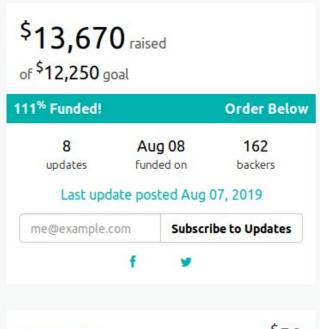
- GitHub: NextThingCo/CHIP-Hardware
 - Schematics
 - PCB Layout
 - Bill of Materials (BoM)
- License:
 - Creative Commons Attribution-ShareAlike (CC-BY-SA)


- Nebula One created by Groguard to be compat
- PocketChip with Nebula One running DOOM!

need get the keyboard sorted next! @pdp7

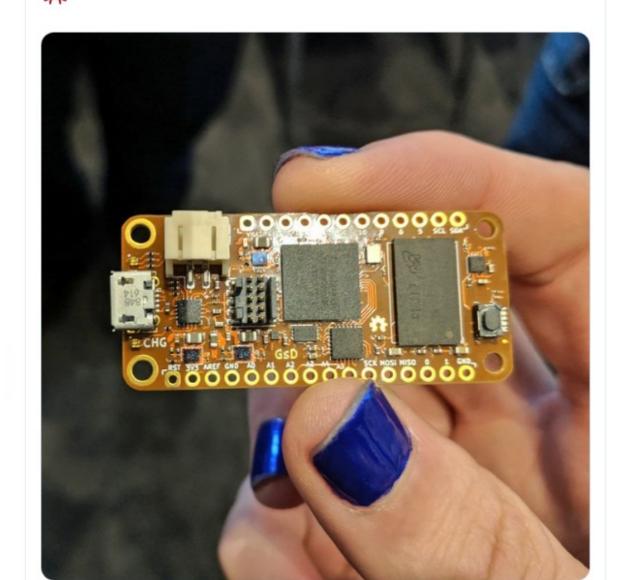
@Jadon @dcschelt


Groguard

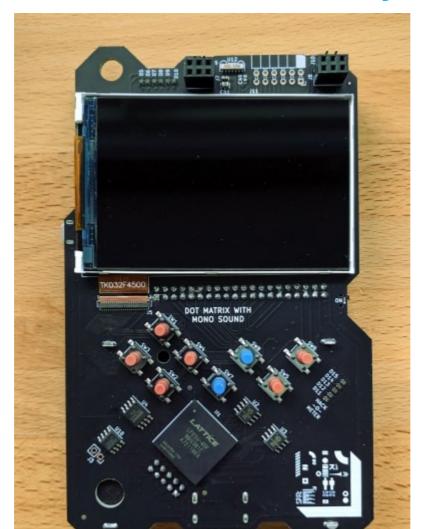


Giant Board by groguard

- A single-board computer in the Adafruit Feather form factor
- Funded on Crowd Supply


Open Source and FPGAs

- Open Source toolchains for FPGAs!
 - Project IceStorm for Lattice iCE40
 - Project Trellis for Lattice ECP5
- Open Source Hardware boards with Lattice ECP5 FPGA with open RISC-V "soft" CPU:
 - Orange Crab by Greg Davill
 - Radiona.org ULX3S
 - David Shah's Trellis board (Ultimate ECP5 Board)
 - MyStorm with ECP5 by Alan



Awesome to see the Orange Crab ECP5 FPGA board by @GregDavill in Lyon thanks to @antonblanchard!

Hackaday 2019 Supercon badge

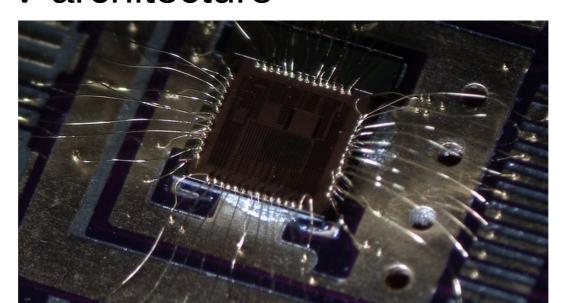
- RISC-V "soft" core on ECP5 FPGA
- Gigantic FPGA In A Game Boy Form Factor

Slides: https://github.com/pdp7/talks/blob/master/oshw-36c3.pdf

Open Source Hardware

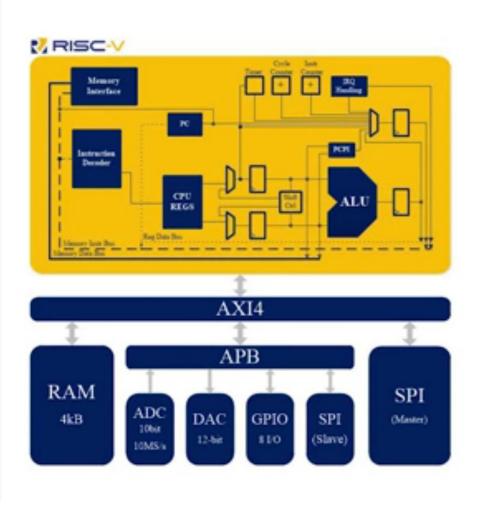
Section: Open Source and Chip Design

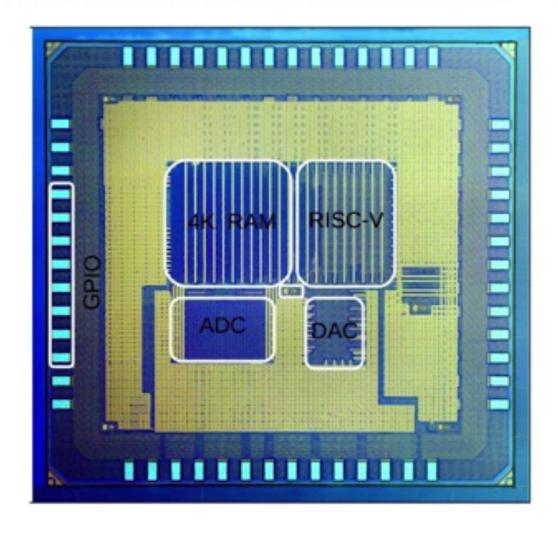
What about open source chips?


- RISC-V: Free and Open RISC Instruction Set Arch
 - "new instruction set architecture (ISA) that was originally designed to support computer architecture research and education and is now set to become a standard open architecture for industry"
 - Video: <u>Instruction Sets Want To Be Free: A Case for RISC-V</u>
 - Video: Krste Asanovic presents at RISC-V and Open Source Silicon Event in Munich on March 23, 2017

What about open source chips?

OnChip Open-V

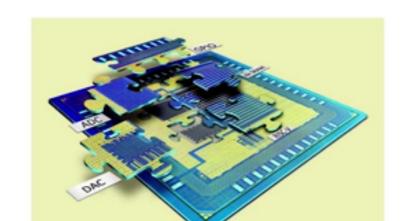

"completely free (as in freedom) and open source 32-bit microcontroller based on the RISC-V architecture"



OnChip Open-V

A 32-bit RISC-V based Microcontroller

OnChip Open-V



- Crowd Supply update: <u>A Taste of Chip Design</u>
- Video: <u>YoPuzzle: mRISC V development platform</u>
- Video: RISC-V Community needs Peripheral Cores

Good to have an Open ISA. What about Peripheral?

- IP vendors have IP based on previous customer. Hard to get a glue-and-play that works for your SoC. → \$\$\$
- There are some std, such as PHYs: USB, LPDDR, PCIe, AMBA BUT
 - no for clocking circuitry, biasing, GPIO For instance a simple Power-on-Reset can hit your pocket, just because!
- . Buses IP are out there but expensive.

• lowRISC:

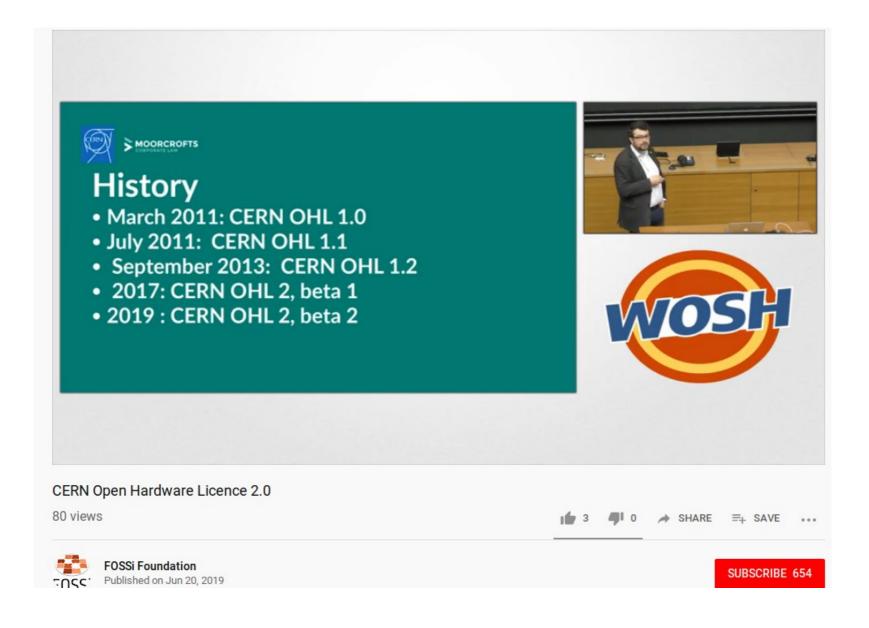
"creating a fully open-sourced, Linux-capable, RISC-V-based SoC, that can be used either directly or as the basis for a custom design"

- Video: <u>Rob Mullins talking about lowRISC</u>
 (RISC-V & Open Source Silicon Event in Munich on March 23, 2017)
- Laura James from lowRISC is here!

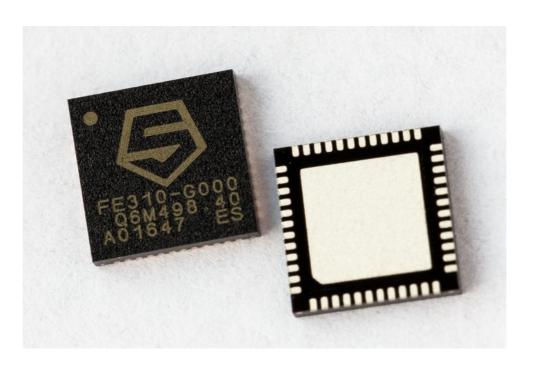

FOSSi Foundation

- The Free and Open Source Silicon Foundation
- "non-profit foundation with the mission to promote and assist free and open digital hardware designs"
- "FOSSi Foundation operates as an open, inclusive, vendor-independent group."

- Open Source Silicon Design Ecosystem
 - Talk by FOSSi co-founder Julius Baxter



- LibreCores
 - Project of the FOSSi Foundation
 - "gateway to free and open source digital designs and other components that you can use and re-use in your digital designs"
 - "advances the idea of OpenCores.org"


Latch-Up Conf 2019 videos

Week of Open Source Hardware

What about silicon?

SiFive

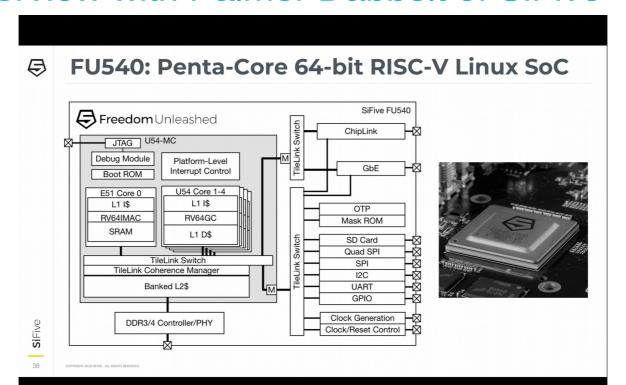
"founded by the creators of the free and open RISC-V architecture as a reaction to the end of conventional transistor scaling and escalating chip design costs"

RISC-V ecosystem

- RISC-V Keynote at Embedded Linux Conf
 - March 12th, 2018
 - Yunsup Lee, Co-Founder and CTO, SiFive
 - Designing the Next Billion Chips: How RISC-V is Revolutionizing Hardware

SiFive FE310 microcontroller

• <u>HiFive1</u>: Arduino-Compatible RISC-V Dev Kit


SiFive FE310 microcontroller

- LoFive designed by Michael Welling (QWERTY Embedded Design)
- Lower cost eval board for SiFive FE310.
- Open Source Hardware design files
- Sold as group buy on GroupGets

SiFive: Linux on RISC-V

- FOSDEM 2018 talk
 - YouTube: "Igniting the Open Hardware Ecosystem with RISC-V: SiFive's Freedom U500 is the World's First Linux-capable Open Source SoC Platform"
 - Interview with Palmer Dabbelt of SiFive

SiFive

SiFive: Linux on RISC-V

HiFive Unleashed

- World's First Multi-Core RISC-V Linux Development Board
 - SiFive FU540-C000 (built in 28nm)
 - 4+1 Multi-Core Coherent Configuration, up to 1.5 GHz
 - 4x U54 RV64GC Application Cores with Sv39 Virtual Memory Support
 - 1x E51 RV64IMAC Management Core
 - Coherent 2MB L2 Cache
 - 64-bit DDR4 with ECC
 - 1x Gigabit Ethernet
 - 8 GB 64-bit DDR4 with ECC
 - Gigabit Ethernet Port
 - 32 MB Quad SPI Flash
 - MicroSD card for removable storage
 - FMC connector for future expansion with add-in cards

OSHW RISC-V Linux board for less than \$100?

- Goal: Sub-\$100 Open Source Hardware board that can run Linux on RISC-V
- Possible by 37c3?
- Interested in working together?
 - drew@oshpark.com / Twitter: @pdp7
 - create a mailing list?

Slides: <u>github.com/pdp7/talks/blob/master/oshw-linux-36c3.pdf</u>

Drew Fustini
drew@oshpark.com
@pdp7 / @oshpark

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.