
Communal Computing
The top of the peer-to-peer stack

Describing “Single-player Computing”

1. PCs inherit decisions made from designing Unix in the 1970s:
Combination of desktop metaphor, timesharing

Describing “Single-player Computing”

2. Made for multiple users on one machine, centered around
timesharing cycles across single-user sessions

Describing “Single-player Computing”

3. This pattern also replicates  
in the client-server relationship

Describing “Single-player Computing”

• PCs inherit decisions made
from designing Unix in the
1970s: combination of desktop
metaphor, timesharing

• Made for multiple users on one
machine, centred around
timesharing cycles across
single-user sessions

• This pattern also replicates in
the client-server relationship

Decentralisation and Interface

• Decentralisation looks toward
personal freedom, transparency,
balanced power dynamics

• But decentralisation also
demands its own conception of a
user interface in turn:
disregarded in favour of modules

• Modular approach is more pliable
— allows for agency and
freedom on a small scale

• If we are approaching
redecentralisation and a P2P
internet then the interface
challenge is ahead of us

Centralisation and Interfaces

• If timesharing let many users
use free cycles of a
supercomputer and pretend it
was theirs, online platforms
reify this same model

• Thin clients to single-function
computers

• Why is it so natural to think
about having an “account”? Or
to “log in”?

• Why has hardware veered
toward thinner clients?

Decentralisation approaches so far 1/2

• When we try to combat this dynamic for everyday users — for
groups of people — we settle for a federated model because
peer-to-peer has a high cost to the user

• Mastodon: HTTP and DNS, trades off for a landlord model

• Scuttlebutt: fully peer-to-peer, creates identities only on the local
machine

Decentralisation approaches so far 2/2

• The lesson we learn from these approaches is that the internet,
as a system, does not incentivise direct ownership

• To a user, it is simply much easier to abstract one’s online life into
this model and accept the tradeoffs

• This is in direct opposition to the core values of the internet’s
earliest users

Systematically, a peer-to-peer internet

• I work on Urbit, which takes a
systematic approach to
constructing a peer-to-peer
internet

• We believe in branching off
computational history at a
specific point and constructing
the entire stack around
modern use cases, human-
scaled networks — while
containing complexity

No clients, no servers

• The core goal: A new layer on
top of the internet, routing
machines built to talk directly

• If we can adjust the systematic
incentives of the network to
keep it friendly by default,
even better

Interface

• If everyone is running their
own computer and speaking
directly to each other, you plan
your UI around a wide net of
small groups

• Centralised platforms are great
for presenting and measuring
aggregate information — this
is difficult to verify across a
swarm of peers

• You may even want to opt-out:
your internet and your
computer could just be the
size of your life

Communal Interfaces

• How do you build for a
community outside the single-
context application?

• How could this interface ever
easily become a “product” as
we currently imagine them?

• Conception of product revolves
around single-function,
account-segregated mega-
computers

• Our current tack is imagining a
“shared desktop” of “file
contexts” and a shared
directory

Defining one’s own UI components

• If you can’t guarantee
everyone has the same UI, you
permission and define read
and write patterns within file
types, per group

• This is defining the group’s
shared data structure

• This is letting the individual (or
the group) shape an inherited
interface from an extensible
component library

Designing Communal Components

• A peer-to-peer interface then
demands:

• Target-agnostic, extensible
components for file types

• within specific shared
application contexts

