Communal Computing
The top of the peer-to-peer stack

Describing “Single-player Computing”

1. PCs inherit decisions made from designing Unix in the 1970s:
Combination of desktop metaphor, timesharing

Describing “Single-player Computing”

2. Made for multiple users on one machine, centered around
timesharing cycles across single-user sessions

Describing “Single-player Computing”

3. This pattern also replicates
In the client-server relationship

Describing “Single-player Computing”

e PCs inherit decisions made
from designing Unix in the
1970s: combination of desktop
metaphor, timesharing

« Made for multiple users on one
machine, centred around
timesharing cycles across
single-user sessions

e This pattern also replicates in
the client-server relationship

Decentralisation and Interface

e Decentralisation looks toward
personal freedom, transparency,
balanced power dynamics

e But decentralisation also
demands its own conception of a
user interface in turn:
disregarded in favour of modules

 Modular approach is more pliable
— allows for agency and
freedom on a small scale

e If we are approaching
redecentralisation and a P2P
internet then the interface
challenge is ahead of us

N

Centralisation and Interfaces

e If timesharing let many users
use free cycles of a
supercomputer and pretend it
was theirs, online platforms
reify this same model

e Thin clients to single-function
computers

e Why is It so natural to think
about having an “account”? Or
to “log in"?

e Why has hardware veered
toward thinner clients?

Login

Email Address

ssssssss

Decentralisation approaches so far 1/2

e When we try to combat this dynamic for everyday users — for
groups of people — we settle for a federated model because
peer-to-peer has a high cost to the user

e Mastodon: HTTP and DNS, trades off for a landlord model

o Scuttlebutt: fully peer-to-peer, creates identities only on the local
machine

Decentralisation approaches so far 2/2

e The lesson we learn from these approaches is that the internet,
as a system, does not incentivise direct ownership

e TO a user, it is simply much easier to abstract one’s online life into
this model and accept the tradeoffs

e This is in direct opposition to the core values of the internet’s
earliest users

e | work on Urbit, which takes a
systematic approach to
constructing a peer-to-peer

iInternet

e We believe in branching off
computational history at a
specific point and constructing
the entire stack around
modern use cases, human-
scaled networks — while
containing complexity

Systematically, a peer-to-peer internet

Clay
Global filesystem

Ford
Typed build system

Gall
Application sandbox

Jael
Secret storage

No clients, no servers

e The core goal: A new layer on
top of the internet, routing
machines built to talk directly

Urbit: Arvo, Ames, Applications

Urbit (Airgapped) Event/Effect Stream

e If we can adjust the systematic
incentives of the network to
keep it friendly by default,
even better

Physical Networking

Applications

Daemons

Shell

Kernel

Hardware

Interface

e If everyone is running their
own computer and speaking
directly to each other, you plan
your Ul around a wide net of
small groups

e Centralised platforms are great
for presenting and measuring
aggregate information — this
Is difficult to verify across a
swarm of peers

e YOU may even want to opt-out:
your internet and your
computer could just be the
size of your life

Sovereign
Computer

Yours

N\

©

(

=

<z Forev _|—

.

//

©
©

The greater
cooperative network

©

©

Communal Interfaces

L HOW do you bUild for a 80 [l Tion Interface Working Group (%) 18 ships |
community outside the single-
context application?

Tlon Interface Working Group 5
18 members 4 online

Urbit.live 16
4,398 member 583 online

e How could this interface ever
easily become a “product” as
we currently imagine them?

e Conception of product revolves e
around single-function,
account-segregated mega-
computers

BepPosiTHOCTHAfA
Moxe/Ib
f3biKa

YCOBEPLIEHCTBOBAHWE =
TENEBM30POB ——
3 YCUT w4 YOUT ==

e Our current tack is imagining a
“shared desktop” of “file =
contexts” and a shared
directory

Defining one’s own Ul components

e If you can’t guarantee
everyone has the same Ul, you
permission and define read
and write patterns within file

types, per group

e This is defining the group’s
shared data structure

e This is letting the individual (or
the group) shape an inherited
interface from an extensible
component library

7 AN

B

]
&
Q

00:

00:

00:

00:

00:

00:

00:

Chat

0:00

0:00

0:00

00

00

00

00

00

00

00

0:00

0:00

hoon-school

Corrina Collins
| would pay 325 bucks a month just to hang out with this dog. He's so precious and friendly

Mark Staarink
(i don't have the buffer limit nearly as big as it needs to be on here)

Paul Driver

haven't done the replay yet
did switch the binary so it wouldn't get worse though

Corrina Collins
https://imgur.com/gallery/xLkgVto

Jimmy Young

| certainly hope "Urbit fixes this ™®"
But can a moon run on a lightbulb?

Paul Driver
i mean you have a lot of moons. so as long as the bulb could do it you could.

Mark Staarink
~fabled you ever thought about running an art magazine on urbit

Ed Urcadez

| have not, but | am now

publishing via Urbit in general is very top of mind for me, personally

~haddef and | had been working on some interface-related flows for navigating the writing - publishing flow
some people might find fun

Matilde Park
Hi
Yes Modulo Drift is still genuinely good

Ed Urcadez
Agree

Elliot Glaysher
It's literally perfect I'm kind of in shock

Logan Allen
There was a beautiful roadrunner in the front yard waiting to greet me

|° 8§ o JOgtes

Read

<« Back to Index

Basic Types
Updated 2019.10.17

A type is usually und

Hoon's type system
one's program might
output value should
defines the squaring
under the desired ty

(For an introduction

In this document we
compiler is written in

T ——
Dojo

!'=((turn a |=(@

[6

[0 50]

7

o 3]

[1 1.685.027.4

[8
[8 [10] [1
9
2
10
[67([03]38
0
2

Designhing Communal Components

o A peer-to-peer interface then
demands:

e Target-agnostic, extensible
components for file types

e within specific shared
application contexts

